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Abstract.  Feature modeling is a popular domain analysis 
method for describing the commonality and variability 
among the domain products. The current formalisms of 
feature modelling do not have enough support for 
automated domain product configuration and validation. 
We have developed a theory of feature modeling: a feature 
model is analogous to a definition of a language; a 
particular feature composition instance (domain product) 
is analogous to a program written in that language; and the 
way the features can be assembled to form a product is 
analogous to the way various tokens can be assembled to 
form a program. To apply this theory, we have developed 
a meta-language Two-Level Grammar++ to specify 
feature models. The interpreter derived from the feature 
model specification performs automated product 
configuration and product quality validation. 

1. Introduction 

The systematic discovery and exploitation of 
commonality across related software systems is a 
fundamental technical requirement for achieving 
successful software reuse [13]. Domain analysis is one 
technique that can be applied to meet this requirement. 
Feature modeling is a popular domain analysis method 
originated in [11]. The current formalisms [6], [11] of 
feature modeling do not have enough integrity for 
supporting automated domain product configuration and 
validation (some tools were implemented to support 
limited automation up to the power of the original 
formalism, e.g. [4]). We have developed a theory of 
feature modeling so that the existing compiler 
technologies can be leveraged for automated domain 
product configuration. 

A feature is a distinguishable characteristic of a 
concept that is relevant to the stakeholder of that domain 
[6]. We have defined that the anatomy of a feature is a 
modular encapsulation of three-dimensional views: an 

abstract view at the domain business level, a constructive 
view at the architectural pattern level and a concrete view 
at the implementation technology level. The artifacts in 
this encapsulation consist of both code and non-code. 
Examples of the artifacts are business domain models, 
design models, make files, HTML documents, XML 
descriptors, etc. We consider features to be concrete and 
non-cross-cutting concepts of a domain, i.e., a feature can 
be incarnated as a software component with specific 
programming and component technologies.  

We consider a feature model to be a general 
specification of a domain: the rules about feature 
configurability and how to manufacture the valid product 
instances in that domain. So, a feature model is a 
definition of feature compositions. By observing that any 
language (machine, assembly, and high level languages) is 
a composition of language elements (constructs and 
tokens) at different abstraction levels, we are motivated to 
develop a language-based theory of feature modeling: a 
feature model is analogous to a definition of a language; a 
particular feature composition is analogous to a program 
written in that language; the way the features can be 
assembled to form a product is analogous to the way 
various tokens can be assembled to form a program; the 
interdependency relationships among the feature models 
are analogous to the object relationships that can be 
defined in object-oriented programming languages. A 
valid product for a domain can be created by composing a 
set of features adhering to the composition rules in the 
feature model. In a feature model, there are atomic 
features and composite features. An atomic feature is a 
feature that does not need to be further refined into sub 
features when there are no variations among different 
products. A composite feature is a composition of one or 
more atomic or composite features. Both the atomic and 
composite features are relative concepts. A composite 
feature in one feature model can act as an atomic feature 
in a foreign feature model. This hierarchy is called the 



feature organization, and the structure of a product is 
called the product organization.  

To apply successfully the programming language 
techniques to feature modeling, the first question to be 
answered is whether there exist concepts in feature models 
that are the counterparts of syntax and semantics in 
programming languages. The syntax of the feature model 
is the business domain feature organizational structure. 
The static semantics indicates the configuration 
constraints such as feature attributes, feature relationship 
cardinalities, interdependencies, and domain-specific 
business operational rules. The dynamic semantics models 
the states of system property changes after the steps of 
feature compositions. That includes pre- and post-
conditions for the configurations, temporal concerns, and 
the Quality of Service (QoS) attributes [14], [17]. An 
example of a QoS attribute is transaction speed in the 
banking domain. We draw a clear delineation of semantics 
of a composition model (feature model) from semantics of 
a composed system. The semantics of a feature model is 
the non-functional quality aspect of a composition; the 
semantics of the composed system is the functional 
quality aspect of a composition. Feature model syntax 
defines the semantics of the composed system meaning 
that as long as the features are composed in a proper 
hierarchy, the composed system should function correctly 
assuming correct feature implementations and correct 
feature model. For example, if we build a money transfer 
system by composing features withdraw and deposit, the 
balance calculation is the semantics of the composed 
system, whereas the transaction speed calculation is the 
semantics of the composition model. 

We have developed a meta-language called Two-Level 
Grammar++ (TLG++), an object-oriented extension of 
Two-Level Grammar (TLG) [18], to specify feature 
models. TLG, a Turing complete grammar, has been used 
for integrated definition of programming language syntax, 
static semantics and dynamic semantics, which makes 
TLG ideal for specifying the feature organization along 
with static configuration constraints and various dynamic 
semantic concerns. Because of object-oriented features, 
TLG++ naturally fits in the conceptual modeling of inter-
connected object relationships among the feature 
organizations. The interpreter derived from the feature 
model specification performs automated product 
configuration and predicted product functional and non-
functional quality validation. 

According to the three-dimensional views of domain 
features, there are three dimensions of feature 
compositions: semantic-business composition, syntactic-
architecture composition, and lexical-technology 
composition. For a particular product created by 
composing a set of features, the semantic-composition 

dimension defines the entangled business logic among the 
features and semantics for individual features; the 
syntactic-composition dimension defines a compositional 
architecture for this product; the lexical-composition 
dimension defines how each feature is technologically 
formed thus contributing to the binary connection, 
interoperation and deployment between any two feature-
implementations. In this paper we only demonstrate the 
first dimension. However, a complete product quality 
validation requires all three-dimensional composition 
validations.  

The following section introduces TLG and TLG++. A 
case study is given in section 3. Section 4 compares our 
work to related work. The paper concludes in section 5. 

2. Two-Level Grammar++ 

Two-Level Grammar (van Wijngaarden grammar or 
W-grammar) is an extension of Context-Free Grammar 
(CFG) and was originally developed to define syntax and 
semantics of programming languages. It has been shown 
that TLG defines the family of recursively enumerable 
sets [15], and suitable restrictions yield context-sensitive 
languages [1]. It has been used to define the complete 
syntax and static semantics of Algol 68 [18] and dynamic 
semantics of programming languages [5]. Recently, it was 
developed as an object-oriented requirements specification 
language integrated with VDM1 tools for UML2 modeling 
and Java/C++ code generation [3]. 

The term “two-level” comes from the fact that a TLG 
is composed by two finite sets of CFG rules: a set of 
formal parameters may be defined using a CFG, with the 
possible generated strings used as arguments in predicate 
functions defined using another CFG. Originally, the first 
level CFG rules were called the meta-productions/rules, 
while the second level parameterized CFG rules were 
called hyper-productions/rules. After the meta-rules get 
substituted into the hyper-rules, a third implicit and 
possibly infinite set of CFG rules, called the production-
rules, are derived. It is the production-rules that finally 
generate the target language that a TLG describes. 

TLG++ is the object-oriented TLG for specifying 
feature models. Moving from TLG to TLG++ poses a 
paradigm shift. TLG is used to physically define 
programming language syntax and semantics, while 
TLG++ is used to abstractly define the concepts of a 
domain. To specify the feature model, we do not have the 
concept “terminal symbol in the target language” in 
TLG++. In fact, the terminals in the feature models are 
either the atomic features or domain-specific keywords. 

                                                 
1 VDM – Vienna Development Method – http://www.ifad.dk/vdmtools 
2 UML – Unified Modeling Language – http://www.omg.org/uml 



Examples of “domain-specific keyword” might be: a 
particular domain logic control pattern, domain-specific 
algorithm, and so on.  

The atomic features in a feature model are represented 
by Universal Resource Identifiers (URIs)3. In the process 
of interpreter generation, the URIs are simply treated as 
terminals. While interpreting a specific product, there are 
two cases under consideration: 1) the atomic feature in 
this feature model is a composite feature in another feature 
model and there is no direct implementation for this 
atomic feature, then preprocessing can be adopted to 
ensure the instance atomic feature used in this particular 
product is in fact a valid instance defined by the 
corresponding URI, which might just involve another 
interpretation process; 2) this atomic feature has a direct 
implementation, in which case the Unified Meta-
component Model (UMM)4 needs to match the URI to 
complete the interpretation. From a single feature model 
perspective, the URI is treated programmatically rather 
than syntactically or semantically. Reasons for the use of 
URIs are: 

First, the URI for an atomic feature or the URI 
compositions for a composite feature are the types of the 
component that implements this feature. Because of the 
nature of composition, the atomic feature has a single 
type, and the composite feature has type variations. 

for example, A :: B C; D. B :: E; F. (5)  
in (5), A and B are composite features, and C, D, E, 
and F are atomic features. “;” means “or”. Suppose the 
URI for each atomic feature is the http:// plus the letter 
symbol. So, atomic feature C has type http://c, D has 
type http://d, and so forth. The types of a composite 
feature are the composition of types of atomic features. 
The composition is a tree structure. The number of types 
of a composite feature equals the number of strings it can 
generate. In this case, A has 3 types shown in fig. 1. If the 
component developer chooses to implement a composite 
feature directly, he/she must identify a specific type of 
choice. A component is considered plug-compatible for 
another component that implements the same feature if 
and only if their types match. One reason we developed 
TLG++ to specify the feature model is because TLG++ 
naturally supports this hierarchical type structure since 
each parameter is defined by a context-free grammar. 

Second, the use of URI gives the potential to specify 
very large and highly distributed domains, as some fairly 
complex features can be defined separately and linked by 
a URI. The mechanism of URI complements object-
orientation for distribution and encapsulation. 

                                                 
3Naming and Addressing, http://www.w3.org/Addressing/ 
4 UMM is the meta-model for feature implementation. Detailed 
explanation of UMM can be found in [13].  
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Fig. 1. The feature A has three types. 
 

Third, compositions can be easily reused, e.g., a 
composite feature represented by a URI in a domain can 
stand as an atomic feature in another domain. 

Lastly, the separation of the feature id from the feature 
representation allows features to have any physical form 
that the designer wishes for designing the visualized 
domain analysis tools, such as an icon, a name, or a 
simple box. 

Object-orientation is proper for modeling real-world 
relationships. The feature models specified in TLG++ 
naturally model object relationship graphs in real-world 
business domains, since both domains of different 
categories and domains (sub-domains) in different levels 
of the hierarchy of the same category can have a feature 
model. Real-world domains are usually hierarchical: one 
narrower-scoped domain inherits the concepts from many 
other broader-scoped domains. With the encapsulation, a 
feature model for a domain is expressed in a main class, 
from which other classes might be linked. TLG++ has a 
root class Notion that is comparable to the Object class 
in the Java programming language. The class Notion 
groups general notational extensions (e.g., list, sequence 
and tree definition) [5], built-in data types, and primitive 
grammatical computations. Those pre-established 
grammatical concepts are inherited by any other TLG++ 
classes. Inheritance and encapsulation provide TLG++ 
much more power than CFG in terms of reusability and 
modularity. By polymorphism, users do not need to cite 
the Notion class in order to call its rules. A class can 
override the rules in its parent classes, and any class can 
override the rules in the Notion class. 

3. A Case Study 

In this section, we give an example on how a feature 
model is formulated, how a feature model is represented 
in TLG++, and how a product can be validated based on 
the feature model.  

Fig. 2 shows a fragment of the feature model for a 
PersonalAccount domain. From the viewpoint of 
stakeholders of this domain, the feature model should 
capture the distinguished domain concepts (i.e., features: 
objects and operations) and the business rules on how 



those concepts are composed to form a product. For the 
sake of this example, we assume the PersonalAccount 
domain has an object (PersonalAccount), and the 
operations (Withdraw, Deposit, and MoneyTransfer). 
MoneyTransfer is a composite feature composed of 
Withdraw and Deposit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Bank domain feature model in TLG++ 

 
In the TLG++ representation, the first thing to be 

noticed is the separation of meta-rules and hyper-rules. 
Rules 1 to 12 are meta-rules, and rule 13 is a hyper-rule 
differentiated by using “::” and “:”. Parameters start with 
a capitalized letter. The values (generated strings) of 
parameters defined in the meta-rules are called the 
Terminal Meta-Production (TMP) of parameters. Plugging 
the TMPs into the hyper-rules, we get the production 
rules. This parameterization, called the Uniform 
Replacement Rule (URR), is the essential theory that 
distinguishes the TLG from the pure CFG. The rule is that 
each occurrence of a parameter in a single hyper-rule 
needs to be replaced by the same TMP of that parameter. 

A parameter followed by a number is a new distinct 
parameter with the same definition as the root parameter. 
In the rule 13 Acount1 and Account2 will not 
necessarily be replaced by a same TMP of Account.  

The convention we used is: the meta-rules are used to 
define the hierarchical context-free type structure for 
parameters; and the hyper rules define the syntax and 
semantics for feature compositions. Integer and 
String are built-in data types defined in the Notion 
class. Rule 12 is an empty definition, which shows that 
MoneyTransfer is a new composite feature to be defined 
in hyper rules. We assume the domain specifications 
should be created by domain experts working with 
standards organizations such as OMG5. 

Rule 13 specifies the syntax and semantics for the 
MoneyTransfer composition. TLG++ rules are natural 
language based, and are flexible in terms of writing styles. 
The convention we have adopted is that some words 
indicating the meaning are followed by the parameter, 
e.g., turnaround TurnAround1. In rule 13, the atomic 
feature is expanded with its specific parameters, e.g., 
turnaround TurnAround2 customer Customer 
withdraw amount Amount1 from stands for atomic 
feature Withdraw. Each rule begins with the syntax 
definition followed by the definition of semantics in 
where clauses. The static semantics here includes: the 
customers must be identical (ensured by URR); the 
accounts must be distinct; the amount withdrawn and 
deposited must be the same; the account to be withdrawn 
from must have a positive balance. Recall that the 
dynamic semantics of the feature composition and the 
dynamic semantics of the composed system are distinct. 
The balance calculations, after the actions withdraw and 
deposit, are the dynamic semantics of the composed 
system, which we will not be able to specify in a feature 
model. One QoS parameter, TurnAround time, is defined 
as the composition dynamic semantics. This example 
should convince the reader that features until being 
implemented as components are static concept entities 
rather than computation entities. 

PersonalAccount is a sub-class of Banking where 
some basic features and feature compositions can be 
inherited. Polymorphism may exist as well. For example, 
the syntax definition of MoneyTransfer could be moved 
up to the Banking feature model. There might be another 
class BusinessAccount sub-classing Banking. So, the 
BusinessAccount feature model only needs to specify 
its specific semantic rules such as the requirement of a 
special security monitor for the MoneyTransfer 
composition, and TurnAround <=10. 

Suppose the product we are trying to build is a simple 
MoneyTransfer system that can be created by 
                                                 
5 OMG - Object Management Group - http://www.omg.org.  

class PersonalAccount extends Banking.   
Account :: Integer.    1 
Customer :: Name SocialNumber.   2 
Bank :: Integer.    3 
Balance :: Integer.   4 
Amount :: Integer.    5 
TurnAround :: Integer.   6 
Name :: String.    7 
SocialNumber :: Integer.   8 
PersonalAccount::http://omg.org/bankdoma
in/personalAccount.   9 

Withdraw :: 
http://omg.org/bankdomain/withdraw. 10

Deposit :: 
http://omg.org/bankdomain/deposit.  11

MoneyTransfer :: .    12
…… 
turnaround TurnAround1 moneyTransfer 
MoneyTransfer :     13
turnaround TurnAround2 customer 
Customer withdraw amount Amount1 from 
Withdraw,   
personal account customer Customer has 
account Account1 in bank Bank1 with 
balance Balance1 PersonalAccount, 
turnaround TurnAround3 customer 
Customer deposit amount Amount2 to 
Deposit,  
personal account customer Customer has 
account Account2 in bank Bank2 with 
balance Balance2 PersonalAccount,  
where Balance1 != 0, 
where Amount1 = Amount2, 
where Account1 != Account2, 
where TurnAround1 = TurnAround2 + 
TurnAround3. 

…… 
end class. 



composing Withdraw and Deposit. For the validation 
of this product, the following are important points: 
1. The goal of the validation is to find out if the feature 

compositions (the business logic or semantics of the 
product) are correct, and whether the product will have 
expected QoS using the supplied components.  

2. The composition of components in this example occurs 
dynamically, so the state is an important concept. The 
state of a running component that implements a 
particular feature is the business data currently 
maintained. Please note that this paper presents the 
composition in the semantic-business dimension, not on 
the architecture or implementation dimension, so the 
state is not the state of the machine that runs this 
component. There are two cases regarding the state: 
first, the component is already running; second, the 
component has been produced, but is not yet running. In 
the second case, the state is the initial state, i.e., the state 
that is instantly after the component is invoked. In both 

cases, the component is treated as a black box. Those 
two cases give the views of dynamic product-line 
assembly and static product-line assembly respectively. 
The example in this section is of the first case. 

3. Yet the validation for the composition is static. We are 
not going to run the system in order to test if the system 
is built by a correct composition. The UMMs of the 
implementation components provide the feature URIs, 
the QoS values, and the states information. This 
information comprises a sentence that stands for the 
product we are going to build; and this sentence should 
be interpreted according to the feature model definition. 
Currently, the UMM is represented in XML and is 
generated automatically by the tool support from the 
component developer [14]. We are investigating how to 
convert the XML based representation to a string of text 
so that the product can be interpreted, or to extend the 
ability of the interpreter to interpret the XML strings 
directly.

 
 turnaround 3 moneyTransfer 

turnaround 1 customer 
jim 140510191 
withdraw amount 100 
from httpw 

personal account customer 
jim 140510191 has account 
1234 in bank 21 with 
balance 1000 httppa 

turnaround 2 customer 
jim 140510191 deposit 
amount 100 to httpd 

personal account customer 
jim 140510191 has account 
5678 in bank 25 with 
balance 2500 httppa 

1

UMM UMM

UMM

UMM  
 1

where 1000 != 0  where 100 =100 where 1234 != 5678 where 3=1+2  

Empty Empty Empty Empty 
 

 
Fig. 3. The parse tree for the product MoneyTransfer. httpw, httppa, httpd stand for the URIs of Withdraw, 

PersonalAccount, and Deposit, respectively.  
 
Fig. 3 provides a parse tree for a sample 

MoneyTransfer product to show how TLG++ can 
grammatically interpret this particular product to validate 
both functional and non-functional composition. As this 
composition is simple, the parse tree is not so deep. The 
QoS attribute TurnAround time for this product is 
expected to be 3 milliseconds. The state information and 
the QoS value for the implementation components are 
randomly selected for the illustration of this example. For 
an easier understanding, the interpretation process 
illustrated in fig. 3 is top-down and directly depends on 
the implicit production-rules, i.e., all the parameters have 
been non-deterministically substituted into the hyper-rules 

before the interpretation process begins. In fig. 3, consider 
when we interpret the product turnaround 3 
moneyTransfer, we apply rule 13 because the parameter 
TurnAround1 has been non-deterministically and 
implicitly substituted by its value 3 before the 
interpretation begins. 

From this bank domain feature model specification, 
the bank domain product interpreter can be generated 
automatically using our tool—the TLG++ interpreter. The 
TLG++ interpreter uses the CUP6 parser generator once 
                                                 
6 CUP – Construction of Useful Parsers - 
http://www.cs.princeton.edu/~appel/modern/java/CUP 



for the meta-rules and once for the hyper-rules to generate 
two sets of parsers. So, from the implementation point of 
view, the interpretation process of a product is bottom up 
and driven by the hyper-rules looking up the generated 
parser for each parameter whenever it encounters a 
parameter in the hyper-rules. This look-up process 
resembles looking-up the value of variables in the symbol 
table during the interpretation of programming languages. 
For example, while parsing the money transfer product, in 
order to apply rule 13, the parser for the parameter 
TurnAround is picked up and parses the string 3 to test if 
it may be derived by TurnAround. 

4. Related Work 

Feature Diagrams. In the literature, a feature model 
usually includes [6]: a feature diagram that portrays 
feature organization; feature semantic definitions; feature 
composition rules and configuration constraints; rationale 
for features indicating the reason for choosing or not 
choosing a given feature. Normally, the feature diagram is 
represented graphically by a CASE tool, and other 
semantic aspects of the feature model are annotated using 
natural language [12], or are linked to other more formal 
techniques such as object diagrams, interaction diagrams, 
state-transition diagrams, and synchronization constraints 
[6]. The separation of the feature diagram and its semantic 
aspects drastically hinders the automated configuration 
and validation of domain products. Furthermore, the 
popular feature diagram computation model is rather 
primitive in terms of computation power of the 
mathematical computation models. When the layers of the 
feature diagram are flattened, the terminal productions (a 
set of terminal features generated from the feature 
diagram) can be represented by a regular expression. The 
tree-shaped feature diagram is even less powerful than the 
regular expression because the star operation in regular 
expressions does not have a counterpart in the feature 
diagram. Compared to the feature diagram, TLG++ is 
much more powerful in computation and presents better 
integrity in representing both the syntactic and semantic 
aspects of feature models. 

Domain specific languages. Domain-Specific 
Languages (DSLs) [7] always have the pre-constructed 
notations and abstractions offering expressive power for a 
particular domain. No matter whether a DSL is in a 
graphic form, or in textual form, it has its own syntax and 
semantics definition. But in this paper, we define the 
domain directly as a language. Any compositions in the 
domain are the relationships presented by the grammar 
rules and are not physically represented by any non-
grammatical symbols (+, *, etc.), or built-in operator 
notations in the meta-language. We call this an open 

operator definition, which gives much flexibility to the 
meta-language for the evolution of operators of a domain, 
i.e., we only need add some new TLG++ rules for the new 
operators.  

Composition Language. Composition Language (CL) 
[8] has defined composition semantics (QoS) such as 
latency, safety, and availability on the component model 
level. It did not address how to formalize QoS in the 
dimension of business domain semantics. 

GenVoca. GenVoca is a software system generator [2]. 
The composition validation in GenVoca is also based on 
the claim that the domain defines a grammar whose 
sentences are software systems. Attribute grammars are 
used for the design rules validation including pre/post 
condition and pre/post restrictions. Although the model of 
validation sounds similar, there are some fundamental 
differences. In GenVoca, the principle for component 
composition is parameterization among components, and 
hence the composition is directly coupled with the 
component implementation language. In this paper, the 
composition is defined by the domain feature 
organizational structure and the associated semantic rules. 
This give a higher level of view of composition and the 
features can be potentially implemented in different 
technologies.  

5. Conclusions 

We have offered a foundation for the feature 
composition and an automated way to validate a 
composed system. We have addressed how both the 
functional and non-functional aspects of composition can 
be formally modeled and validated. 

The method chosen to specify the feature model is 
Two-Level Grammar++. We could choose attribute 
grammar to specify the feature model, and it also provides 
Turing computability. However, just as the attribute 
grammar is not proper for specifying programming 
language dynamic semantics [9], it is not proper for 
specifying the dynamic semantics of feature composition. 
Compared to a regular programming language or other 
formal notations such as Z [16] and feature logic [20], a 
grammar has better constructs and computation 
mechanism for specifying languages. Specifically, TLG++ 
as a meta-language chosen in this paper has the following 
advantages: 
1. The ability of TLG++ to integrate the feature model 

syntax and semantics into one formal grammar notation 
gives formal consistency and completeness of the 
specification, and eliminates the task of building a 
separate interpreter. Compared to the conventional way 
that defines the syntax with a grammar and explains the 



semantics in natural language, the integration of syntax 
and semantics poses easier maintenance. 

2. TLG has a context-free hierarchical type structure, 
which supports the type system in feature modeling.  

3. Because both the meta and hyper rules of TLG++ are 
CFGs, the derivation of the product parser/interpreter 
can be automated and facilitated by existing parser 
generators, which also makes the implementation of the 
TLG++ meta-language easier. 

4. As can be seen from the examples, the natural language 
style of TLG++ rules improves the language flexibility 
and readability. 

TLG++ is simple (the only rule is URR) and flexible 
(natural language based). Flexibility presents a great 
descriptive potential but also gives the disadvantage to 
well control the language. The notation is not desirable to 
be directly used by the domain engineers, so we are 
investigating embedding the grammatical interpretation 
engine into a domain specific modeling tool such as GME 
[10], [19] to complement the graphic modeling notations 
with the automated semantic interpretation.  Furthermore, 
formally specifying the feature models are magnitudes 
harder than specifying programming languages because in 
the programming language domain, common patterns of 
language constructs are well known and the conventions 
of writing a correct and complete specification are easy to 
establish. We have experienced that not only the 
formulation of a domain abstraction, but also the 
establishment of TLG++ conventions for the purpose of 
feature model specification are inventive and challenging 
tasks. 
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