
Grammatically Interpreting Feature Compositions

Wei Zhao1, Barrett R. Bryant1, Fei Cao1, Rajeev R. Raje2, Mikhail Auguston3,
Carol C. Burt1, and Andrew M. Olson2

1 Computer and Information Sciences, University of Alabama at Birmingham,
Birmingham, AL 35294-1170, USA. {zhaow, bryant, caof, cburt}@cis.uab.edu

2 Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA. {rraje, aolson}@cs.iupui.edu

3 Computer Science, Naval Postgraduate School, Monterey, CA 93943, USA
auguston@cs.nps.navy.mil

Abstract. Feature modeling is a popular domain analysis
method for describing the commonality and variability
among the domain products. The current formalisms of
feature modelling do not have enough support for
automated domain product configuration and validation.
We have developed a theory of feature modeling: a feature
model is analogous to a definition of a language; a
particular feature composition instance (domain product)
is analogous to a program written in that language; and the
way the features can be assembled to form a product is
analogous to the way various tokens can be assembled to
form a program. To apply this theory, we have developed
a meta-language Two-Level Grammar++ to specify
feature models. The interpreter derived from the feature
model specification performs automated product
configuration and product quality validation.

1. Introduction

The systematic discovery and exploitation of
commonality across related software systems is a
fundamental technical requirement for achieving
successful software reuse [13]. Domain analysis is one
technique that can be applied to meet this requirement.
Feature modeling is a popular domain analysis method
originated in [11]. The current formalisms [6], [11] of
feature modeling do not have enough integrity for
supporting automated domain product configuration and
validation (some tools were implemented to support
limited automation up to the power of the original
formalism, e.g. [4]). We have developed a theory of
feature modeling so that the existing compiler
technologies can be leveraged for automated domain
product configuration.

A feature is a distinguishable characteristic of a
concept that is relevant to the stakeholder of that domain
[6]. We have defined that the anatomy of a feature is a
modular encapsulation of three-dimensional views: an

abstract view at the domain business level, a constructive
view at the architectural pattern level and a concrete view
at the implementation technology level. The artifacts in
this encapsulation consist of both code and non-code.
Examples of the artifacts are business domain models,
design models, make files, HTML documents, XML
descriptors, etc. We consider features to be concrete and
non-cross-cutting concepts of a domain, i.e., a feature can
be incarnated as a software component with specific
programming and component technologies.

We consider a feature model to be a general
specification of a domain: the rules about feature
configurability and how to manufacture the valid product
instances in that domain. So, a feature model is a
definition of feature compositions. By observing that any
language (machine, assembly, and high level languages) is
a composition of language elements (constructs and
tokens) at different abstraction levels, we are motivated to
develop a language-based theory of feature modeling: a
feature model is analogous to a definition of a language; a
particular feature composition is analogous to a program
written in that language; the way the features can be
assembled to form a product is analogous to the way
various tokens can be assembled to form a program; the
interdependency relationships among the feature models
are analogous to the object relationships that can be
defined in object-oriented programming languages. A
valid product for a domain can be created by composing a
set of features adhering to the composition rules in the
feature model. In a feature model, there are atomic
features and composite features. An atomic feature is a
feature that does not need to be further refined into sub
features when there are no variations among different
products. A composite feature is a composition of one or
more atomic or composite features. Both the atomic and
composite features are relative concepts. A composite
feature in one feature model can act as an atomic feature
in a foreign feature model. This hierarchy is called the

feature organization, and the structure of a product is
called the product organization.

To apply successfully the programming language
techniques to feature modeling, the first question to be
answered is whether there exist concepts in feature models
that are the counterparts of syntax and semantics in
programming languages. The syntax of the feature model
is the business domain feature organizational structure.
The static semantics indicates the configuration
constraints such as feature attributes, feature relationship
cardinalities, interdependencies, and domain-specific
business operational rules. The dynamic semantics models
the states of system property changes after the steps of
feature compositions. That includes pre- and post-
conditions for the configurations, temporal concerns, and
the Quality of Service (QoS) attributes [14], [17]. An
example of a QoS attribute is transaction speed in the
banking domain. We draw a clear delineation of semantics
of a composition model (feature model) from semantics of
a composed system. The semantics of a feature model is
the non-functional quality aspect of a composition; the
semantics of the composed system is the functional
quality aspect of a composition. Feature model syntax
defines the semantics of the composed system meaning
that as long as the features are composed in a proper
hierarchy, the composed system should function correctly
assuming correct feature implementations and correct
feature model. For example, if we build a money transfer
system by composing features withdraw and deposit, the
balance calculation is the semantics of the composed
system, whereas the transaction speed calculation is the
semantics of the composition model.

We have developed a meta-language called Two-Level
Grammar++ (TLG++), an object-oriented extension of
Two-Level Grammar (TLG) [18], to specify feature
models. TLG, a Turing complete grammar, has been used
for integrated definition of programming language syntax,
static semantics and dynamic semantics, which makes
TLG ideal for specifying the feature organization along
with static configuration constraints and various dynamic
semantic concerns. Because of object-oriented features,
TLG++ naturally fits in the conceptual modeling of inter-
connected object relationships among the feature
organizations. The interpreter derived from the feature
model specification performs automated product
configuration and predicted product functional and non-
functional quality validation.

According to the three-dimensional views of domain
features, there are three dimensions of feature
compositions: semantic-business composition, syntactic-
architecture composition, and lexical-technology
composition. For a particular product created by
composing a set of features, the semantic-composition

dimension defines the entangled business logic among the
features and semantics for individual features; the
syntactic-composition dimension defines a compositional
architecture for this product; the lexical-composition
dimension defines how each feature is technologically
formed thus contributing to the binary connection,
interoperation and deployment between any two feature-
implementations. In this paper we only demonstrate the
first dimension. However, a complete product quality
validation requires all three-dimensional composition
validations.

The following section introduces TLG and TLG++. A
case study is given in section 3. Section 4 compares our
work to related work. The paper concludes in section 5.

2. Two-Level Grammar++

Two-Level Grammar (van Wijngaarden grammar or
W-grammar) is an extension of Context-Free Grammar
(CFG) and was originally developed to define syntax and
semantics of programming languages. It has been shown
that TLG defines the family of recursively enumerable
sets [15], and suitable restrictions yield context-sensitive
languages [1]. It has been used to define the complete
syntax and static semantics of Algol 68 [18] and dynamic
semantics of programming languages [5]. Recently, it was
developed as an object-oriented requirements specification
language integrated with VDM1 tools for UML2 modeling
and Java/C++ code generation [3].

The term “two-level” comes from the fact that a TLG
is composed by two finite sets of CFG rules: a set of
formal parameters may be defined using a CFG, with the
possible generated strings used as arguments in predicate
functions defined using another CFG. Originally, the first
level CFG rules were called the meta-productions/rules,
while the second level parameterized CFG rules were
called hyper-productions/rules. After the meta-rules get
substituted into the hyper-rules, a third implicit and
possibly infinite set of CFG rules, called the production-
rules, are derived. It is the production-rules that finally
generate the target language that a TLG describes.

TLG++ is the object-oriented TLG for specifying
feature models. Moving from TLG to TLG++ poses a
paradigm shift. TLG is used to physically define
programming language syntax and semantics, while
TLG++ is used to abstractly define the concepts of a
domain. To specify the feature model, we do not have the
concept “terminal symbol in the target language” in
TLG++. In fact, the terminals in the feature models are
either the atomic features or domain-specific keywords.

1 VDM – Vienna Development Method – http://www.ifad.dk/vdmtools
2 UML – Unified Modeling Language – http://www.omg.org/uml

Examples of “domain-specific keyword” might be: a
particular domain logic control pattern, domain-specific
algorithm, and so on.

The atomic features in a feature model are represented
by Universal Resource Identifiers (URIs)3. In the process
of interpreter generation, the URIs are simply treated as
terminals. While interpreting a specific product, there are
two cases under consideration: 1) the atomic feature in
this feature model is a composite feature in another feature
model and there is no direct implementation for this
atomic feature, then preprocessing can be adopted to
ensure the instance atomic feature used in this particular
product is in fact a valid instance defined by the
corresponding URI, which might just involve another
interpretation process; 2) this atomic feature has a direct
implementation, in which case the Unified Meta-
component Model (UMM)4 needs to match the URI to
complete the interpretation. From a single feature model
perspective, the URI is treated programmatically rather
than syntactically or semantically. Reasons for the use of
URIs are:

First, the URI for an atomic feature or the URI
compositions for a composite feature are the types of the
component that implements this feature. Because of the
nature of composition, the atomic feature has a single
type, and the composite feature has type variations.

for example, A :: B C; D. B :: E; F. (5)
in (5), A and B are composite features, and C, D, E,
and F are atomic features. “;” means “or”. Suppose the
URI for each atomic feature is the http:// plus the letter
symbol. So, atomic feature C has type http://c, D has
type http://d, and so forth. The types of a composite
feature are the composition of types of atomic features.
The composition is a tree structure. The number of types
of a composite feature equals the number of strings it can
generate. In this case, A has 3 types shown in fig. 1. If the
component developer chooses to implement a composite
feature directly, he/she must identify a specific type of
choice. A component is considered plug-compatible for
another component that implements the same feature if
and only if their types match. One reason we developed
TLG++ to specify the feature model is because TLG++
naturally supports this hierarchical type structure since
each parameter is defined by a context-free grammar.

Second, the use of URI gives the potential to specify
very large and highly distributed domains, as some fairly
complex features can be defined separately and linked by
a URI. The mechanism of URI complements object-
orientation for distribution and encapsulation.

3Naming and Addressing, http://www.w3.org/Addressing/
4 UMM is the meta-model for feature implementation. Detailed
explanation of UMM can be found in [13].

http://d

http://c

http://e

h t t p : / / c

h t t p : / / f

Fig. 1. The feature A has three types.

Third, compositions can be easily reused, e.g., a
composite feature represented by a URI in a domain can
stand as an atomic feature in another domain.

Lastly, the separation of the feature id from the feature
representation allows features to have any physical form
that the designer wishes for designing the visualized
domain analysis tools, such as an icon, a name, or a
simple box.

Object-orientation is proper for modeling real-world
relationships. The feature models specified in TLG++
naturally model object relationship graphs in real-world
business domains, since both domains of different
categories and domains (sub-domains) in different levels
of the hierarchy of the same category can have a feature
model. Real-world domains are usually hierarchical: one
narrower-scoped domain inherits the concepts from many
other broader-scoped domains. With the encapsulation, a
feature model for a domain is expressed in a main class,
from which other classes might be linked. TLG++ has a
root class Notion that is comparable to the Object class
in the Java programming language. The class Notion
groups general notational extensions (e.g., list, sequence
and tree definition) [5], built-in data types, and primitive
grammatical computations. Those pre-established
grammatical concepts are inherited by any other TLG++
classes. Inheritance and encapsulation provide TLG++
much more power than CFG in terms of reusability and
modularity. By polymorphism, users do not need to cite
the Notion class in order to call its rules. A class can
override the rules in its parent classes, and any class can
override the rules in the Notion class.

3. A Case Study

In this section, we give an example on how a feature
model is formulated, how a feature model is represented
in TLG++, and how a product can be validated based on
the feature model.

Fig. 2 shows a fragment of the feature model for a
PersonalAccount domain. From the viewpoint of
stakeholders of this domain, the feature model should
capture the distinguished domain concepts (i.e., features:
objects and operations) and the business rules on how

those concepts are composed to form a product. For the
sake of this example, we assume the PersonalAccount
domain has an object (PersonalAccount), and the
operations (Withdraw, Deposit, and MoneyTransfer).
MoneyTransfer is a composite feature composed of
Withdraw and Deposit.

Fig. 2. Bank domain feature model in TLG++

In the TLG++ representation, the first thing to be

noticed is the separation of meta-rules and hyper-rules.
Rules 1 to 12 are meta-rules, and rule 13 is a hyper-rule
differentiated by using “::” and “:”. Parameters start with
a capitalized letter. The values (generated strings) of
parameters defined in the meta-rules are called the
Terminal Meta-Production (TMP) of parameters. Plugging
the TMPs into the hyper-rules, we get the production
rules. This parameterization, called the Uniform
Replacement Rule (URR), is the essential theory that
distinguishes the TLG from the pure CFG. The rule is that
each occurrence of a parameter in a single hyper-rule
needs to be replaced by the same TMP of that parameter.

A parameter followed by a number is a new distinct
parameter with the same definition as the root parameter.
In the rule 13 Acount1 and Account2 will not
necessarily be replaced by a same TMP of Account.

The convention we used is: the meta-rules are used to
define the hierarchical context-free type structure for
parameters; and the hyper rules define the syntax and
semantics for feature compositions. Integer and
String are built-in data types defined in the Notion
class. Rule 12 is an empty definition, which shows that
MoneyTransfer is a new composite feature to be defined
in hyper rules. We assume the domain specifications
should be created by domain experts working with
standards organizations such as OMG5.

Rule 13 specifies the syntax and semantics for the
MoneyTransfer composition. TLG++ rules are natural
language based, and are flexible in terms of writing styles.
The convention we have adopted is that some words
indicating the meaning are followed by the parameter,
e.g., turnaround TurnAround1. In rule 13, the atomic
feature is expanded with its specific parameters, e.g.,
turnaround TurnAround2 customer Customer
withdraw amount Amount1 from stands for atomic
feature Withdraw. Each rule begins with the syntax
definition followed by the definition of semantics in
where clauses. The static semantics here includes: the
customers must be identical (ensured by URR); the
accounts must be distinct; the amount withdrawn and
deposited must be the same; the account to be withdrawn
from must have a positive balance. Recall that the
dynamic semantics of the feature composition and the
dynamic semantics of the composed system are distinct.
The balance calculations, after the actions withdraw and
deposit, are the dynamic semantics of the composed
system, which we will not be able to specify in a feature
model. One QoS parameter, TurnAround time, is defined
as the composition dynamic semantics. This example
should convince the reader that features until being
implemented as components are static concept entities
rather than computation entities.

PersonalAccount is a sub-class of Banking where
some basic features and feature compositions can be
inherited. Polymorphism may exist as well. For example,
the syntax definition of MoneyTransfer could be moved
up to the Banking feature model. There might be another
class BusinessAccount sub-classing Banking. So, the
BusinessAccount feature model only needs to specify
its specific semantic rules such as the requirement of a
special security monitor for the MoneyTransfer
composition, and TurnAround <=10.

Suppose the product we are trying to build is a simple
MoneyTransfer system that can be created by

5 OMG - Object Management Group - http://www.omg.org.

class PersonalAccount extends Banking.
Account :: Integer. 1
Customer :: Name SocialNumber. 2
Bank :: Integer. 3
Balance :: Integer. 4
Amount :: Integer. 5
TurnAround :: Integer. 6
Name :: String. 7
SocialNumber :: Integer. 8
PersonalAccount::http://omg.org/bankdoma
in/personalAccount. 9

Withdraw ::
http://omg.org/bankdomain/withdraw. 10

Deposit ::
http://omg.org/bankdomain/deposit. 11

MoneyTransfer :: . 12
……
turnaround TurnAround1 moneyTransfer
MoneyTransfer : 13
turnaround TurnAround2 customer
Customer withdraw amount Amount1 from
Withdraw,
personal account customer Customer has
account Account1 in bank Bank1 with
balance Balance1 PersonalAccount,
turnaround TurnAround3 customer
Customer deposit amount Amount2 to
Deposit,
personal account customer Customer has
account Account2 in bank Bank2 with
balance Balance2 PersonalAccount,
where Balance1 != 0,
where Amount1 = Amount2,
where Account1 != Account2,
where TurnAround1 = TurnAround2 +
TurnAround3.

……
end class.

composing Withdraw and Deposit. For the validation
of this product, the following are important points:
1. The goal of the validation is to find out if the feature

compositions (the business logic or semantics of the
product) are correct, and whether the product will have
expected QoS using the supplied components.

2. The composition of components in this example occurs
dynamically, so the state is an important concept. The
state of a running component that implements a
particular feature is the business data currently
maintained. Please note that this paper presents the
composition in the semantic-business dimension, not on
the architecture or implementation dimension, so the
state is not the state of the machine that runs this
component. There are two cases regarding the state:
first, the component is already running; second, the
component has been produced, but is not yet running. In
the second case, the state is the initial state, i.e., the state
that is instantly after the component is invoked. In both

cases, the component is treated as a black box. Those
two cases give the views of dynamic product-line
assembly and static product-line assembly respectively.
The example in this section is of the first case.

3. Yet the validation for the composition is static. We are
not going to run the system in order to test if the system
is built by a correct composition. The UMMs of the
implementation components provide the feature URIs,
the QoS values, and the states information. This
information comprises a sentence that stands for the
product we are going to build; and this sentence should
be interpreted according to the feature model definition.
Currently, the UMM is represented in XML and is
generated automatically by the tool support from the
component developer [14]. We are investigating how to
convert the XML based representation to a string of text
so that the product can be interpreted, or to extend the
ability of the interpreter to interpret the XML strings
directly.

 turnaround 3 moneyTransfer

turnaround 1 customer
jim 140510191
withdraw amount 100
from httpw

personal account customer
jim 140510191 has account
1234 in bank 21 with
balance 1000 httppa

turnaround 2 customer
jim 140510191 deposit
amount 100 to httpd

personal account customer
jim 140510191 has account
5678 in bank 25 with
balance 2500 httppa

1

UMM UMM

UMM

UMM
 1

where 1000 != 0 where 100 =100 where 1234 != 5678 where 3=1+2

Empty Empty Empty Empty

Fig. 3. The parse tree for the product MoneyTransfer. httpw, httppa, httpd stand for the URIs of Withdraw,

PersonalAccount, and Deposit, respectively.

Fig. 3 provides a parse tree for a sample

MoneyTransfer product to show how TLG++ can
grammatically interpret this particular product to validate
both functional and non-functional composition. As this
composition is simple, the parse tree is not so deep. The
QoS attribute TurnAround time for this product is
expected to be 3 milliseconds. The state information and
the QoS value for the implementation components are
randomly selected for the illustration of this example. For
an easier understanding, the interpretation process
illustrated in fig. 3 is top-down and directly depends on
the implicit production-rules, i.e., all the parameters have
been non-deterministically substituted into the hyper-rules

before the interpretation process begins. In fig. 3, consider
when we interpret the product turnaround 3
moneyTransfer, we apply rule 13 because the parameter
TurnAround1 has been non-deterministically and
implicitly substituted by its value 3 before the
interpretation begins.

From this bank domain feature model specification,
the bank domain product interpreter can be generated
automatically using our tool—the TLG++ interpreter. The
TLG++ interpreter uses the CUP6 parser generator once

6 CUP – Construction of Useful Parsers -
http://www.cs.princeton.edu/~appel/modern/java/CUP

for the meta-rules and once for the hyper-rules to generate
two sets of parsers. So, from the implementation point of
view, the interpretation process of a product is bottom up
and driven by the hyper-rules looking up the generated
parser for each parameter whenever it encounters a
parameter in the hyper-rules. This look-up process
resembles looking-up the value of variables in the symbol
table during the interpretation of programming languages.
For example, while parsing the money transfer product, in
order to apply rule 13, the parser for the parameter
TurnAround is picked up and parses the string 3 to test if
it may be derived by TurnAround.

4. Related Work

Feature Diagrams. In the literature, a feature model
usually includes [6]: a feature diagram that portrays
feature organization; feature semantic definitions; feature
composition rules and configuration constraints; rationale
for features indicating the reason for choosing or not
choosing a given feature. Normally, the feature diagram is
represented graphically by a CASE tool, and other
semantic aspects of the feature model are annotated using
natural language [12], or are linked to other more formal
techniques such as object diagrams, interaction diagrams,
state-transition diagrams, and synchronization constraints
[6]. The separation of the feature diagram and its semantic
aspects drastically hinders the automated configuration
and validation of domain products. Furthermore, the
popular feature diagram computation model is rather
primitive in terms of computation power of the
mathematical computation models. When the layers of the
feature diagram are flattened, the terminal productions (a
set of terminal features generated from the feature
diagram) can be represented by a regular expression. The
tree-shaped feature diagram is even less powerful than the
regular expression because the star operation in regular
expressions does not have a counterpart in the feature
diagram. Compared to the feature diagram, TLG++ is
much more powerful in computation and presents better
integrity in representing both the syntactic and semantic
aspects of feature models.

Domain specific languages. Domain-Specific
Languages (DSLs) [7] always have the pre-constructed
notations and abstractions offering expressive power for a
particular domain. No matter whether a DSL is in a
graphic form, or in textual form, it has its own syntax and
semantics definition. But in this paper, we define the
domain directly as a language. Any compositions in the
domain are the relationships presented by the grammar
rules and are not physically represented by any non-
grammatical symbols (+, *, etc.), or built-in operator
notations in the meta-language. We call this an open

operator definition, which gives much flexibility to the
meta-language for the evolution of operators of a domain,
i.e., we only need add some new TLG++ rules for the new
operators.

Composition Language. Composition Language (CL)
[8] has defined composition semantics (QoS) such as
latency, safety, and availability on the component model
level. It did not address how to formalize QoS in the
dimension of business domain semantics.

GenVoca. GenVoca is a software system generator [2].
The composition validation in GenVoca is also based on
the claim that the domain defines a grammar whose
sentences are software systems. Attribute grammars are
used for the design rules validation including pre/post
condition and pre/post restrictions. Although the model of
validation sounds similar, there are some fundamental
differences. In GenVoca, the principle for component
composition is parameterization among components, and
hence the composition is directly coupled with the
component implementation language. In this paper, the
composition is defined by the domain feature
organizational structure and the associated semantic rules.
This give a higher level of view of composition and the
features can be potentially implemented in different
technologies.

5. Conclusions

We have offered a foundation for the feature
composition and an automated way to validate a
composed system. We have addressed how both the
functional and non-functional aspects of composition can
be formally modeled and validated.

The method chosen to specify the feature model is
Two-Level Grammar++. We could choose attribute
grammar to specify the feature model, and it also provides
Turing computability. However, just as the attribute
grammar is not proper for specifying programming
language dynamic semantics [9], it is not proper for
specifying the dynamic semantics of feature composition.
Compared to a regular programming language or other
formal notations such as Z [16] and feature logic [20], a
grammar has better constructs and computation
mechanism for specifying languages. Specifically, TLG++
as a meta-language chosen in this paper has the following
advantages:
1. The ability of TLG++ to integrate the feature model

syntax and semantics into one formal grammar notation
gives formal consistency and completeness of the
specification, and eliminates the task of building a
separate interpreter. Compared to the conventional way
that defines the syntax with a grammar and explains the

semantics in natural language, the integration of syntax
and semantics poses easier maintenance.

2. TLG has a context-free hierarchical type structure,
which supports the type system in feature modeling.

3. Because both the meta and hyper rules of TLG++ are
CFGs, the derivation of the product parser/interpreter
can be automated and facilitated by existing parser
generators, which also makes the implementation of the
TLG++ meta-language easier.

4. As can be seen from the examples, the natural language
style of TLG++ rules improves the language flexibility
and readability.

TLG++ is simple (the only rule is URR) and flexible
(natural language based). Flexibility presents a great
descriptive potential but also gives the disadvantage to
well control the language. The notation is not desirable to
be directly used by the domain engineers, so we are
investigating embedding the grammatical interpretation
engine into a domain specific modeling tool such as GME
[10], [19] to complement the graphic modeling notations
with the automated semantic interpretation. Furthermore,
formally specifying the feature models are magnitudes
harder than specifying programming languages because in
the programming language domain, common patterns of
language constructs are well known and the conventions
of writing a correct and complete specification are easy to
establish. We have experienced that not only the
formulation of a domain abstraction, but also the
establishment of TLG++ conventions for the purpose of
feature model specification are inventive and challenging
tasks.

6. Acknowledgement

This research is supported by the U. S. Office of Naval
Research under the award number N00014-01-1-0746.

References

[1] J. L. Baker, Some Formal Properties of the Syntax of
ALGOL 68, Doctoral Dissertation, University of
Washington, 1970.

[2] D. Batory, B. J. Geraci, “Composition Validation and
Subjectivity in GenVoca Generators”, IEEE Trans. Softw.
Eng., Vol. 23, No. 2, pp. 67-82, 1997.

[3] B. R. Bryant, B.-S. Lee, “Two–Level Grammar as an
Object-Oriented Requirements Specification Language,”
Proc. 35th Hawaii Int. Conf. System Sciences, Vol. 9, 2002.

[4] F. Cao, Z. Huang, B. Bryant, C. Burt, R. Raje, A. Olson, M.
Auguston, “Automating Feature-Oriented Domain
Analysis,” Proc. of the 2003 International Conference on
Software Engineering Research and Practice (SERP'03),
CSREA Press, pp. 944-949, 2003.

[5] J. C. Cleaveland, R. C. Uzgalis, Grammars for
Programming Languages, Elsevier North-Holland, Inc.,
1977.

[6] K. Czarnecki, U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.

[7] A. van Deursen, P. Klint, J. Visser, “Domain-Specific
Languages: An Annotated Bibliography”, CWI, 2000,
http://homepages.cwi.nl/~arie/papers/dslbib/

[8] J. Ivers, N. Sinha, K. Wallnau, “A Basis for Composition
Language CL”, Technical Note, CMU/SEI-2002-TN-026,
2002.

[9] G. E. Kaiser, “Incremental Dynamic Semantics for
Language-based Programming Environments”, ACM
Trans. Program. Lang. Syst. Vol. 11, pp. 169-193, 1989.

[10] GME User’s Manual. The Institute for Software Integrated
Systems, Vanderbilt University.
http://www.isis.vanderbilt.edu/projects/gme/

[11] K. C. Kang, S, G. Cohen, J. A. Hess, W. E. Novak, A. S.
Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report, CMU/SEI-90-TR-21,
1990.

[12] K. Lee, K. C. Kang, J. Lee, “Concepts and Guidelines of
Feature Modeling”, Proc. 7th Int. Conf. Software Reuse, pp.
62-77, 2002.

[13] R. Prieto-Diaz, “Domain Analysis: An Introduction”, ACM
SIGSOFT Softw. Eng. Notes Vol. 15, pp. 47-54, 1990.

[14] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C.
Burt, “A Quality of Service-Based Framework for Creating
Distributed Heterogeneous Software Components,”
Concurrency Comput.: Pract. Exp. Vol. 14, pp. 1009-1034,
2002.

[15] M. Sintzoff, “Existence of van Wijingaarden’s Syntax for
Every Recursively Enumerable Set,” Ann. Soc. Sci.
Bruxelles, Vol. 2, pp. 115-118, 1967.

[16] J. M. Spivey, The Z Notation: A Reference Manual.
Prentice Hall, New York, 1989.

[17] C. Sun, R. Raje, A. Olson, B. Bryant, M. Auguston, C. Burt,
Z. Huang, “Composition and Decomposition of Quality of
Service Parameters,” Proc. 5th Int. Conf. Algorithms and
Architectures for Parallel Processing, pp. 273-277, 2002.

[18] A. van Wijngaarden, “Revised Report on the Algorithmic
Language ALGOL 68.” Acta Informatica, Vol. 5, pp. 1-236,
1974.

[19] W. Zhao, B. Bryant, J. Gray, C. Burt, R. Raje, M.
Auguston, A. Olson. “A Generative and Model Driven
Framework for Automated Software Product Generation”.
Proc. of the 6th ICSE Workshop of Component Based
Software Engineering, pp. 103-108, 2003

[20] A. Zeller, G. Snelting, “Unified Versioning Through
Feature Logic”, ACM Transactions on Software
Engineering and Methodologies, Vol. 6, No. 4, pp. 398-441,
1997.

