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Abstract
Assuring quality of service (QoS) requirements is crit-

ical when assembling a distributed real-time and embed-
ded (DRE) system from a repository of existing components.
This paper presents a two-level approach for assuring sat-
isfaction of QoS requirements in the context of a reduced
design space for DRE systems. A dynamic and parallel
approach is introduced to prune off the infeasible design
spaces at the first level. Evolutionary algorithms cooperat-
ing with a domain-specific scripting language then discard
less probable design spaces using statistics. These tech-
niques fulfill the collective objectives of pruning and assur-
ing the design space at system assembly time.

1. Introduction

Distributed real-time and embedded (DRE) systems are
widely used in military, manufacturing, and control systems
[17]. Many of these systems consist of legacy components.
From the perspective of software engineering, there is an
urgent demand to fulfill the need of the development, evo-
lution and integration of DRE systems from existing com-
ponents. This is in the vision of the UniFrame project [16].
During the synthesis of a DRE system, various appropriate
components can be selected from a repository. However,
numerous design and deployment decisions for the selected
components usually generate a tremendous number of pos-
sible alternatives for constructing a DRE system. The de-
sign information (i.e., specific design and deployment deci-
sions and information of involved components) required for
synthesizing a DRE system is called adesign space[13].
Among the huge number of possible design spaces, many
of them, in fact, do not satisfy the requirements of the DRE
system (i.e.,constraint satisfaction). In addition, construct-
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ing a DRE system (e.g., an avionics system) is naturally
expensive and less modifiable. In order to decrease the pos-
sibility of errors occuring after construction of a DRE sys-
tem, validating a DRE system in advance is also necessary
to conserve the future potential costs. Therefore, it is neces-
sary to have a formal, manageable, scalable and automatic
design space exploration approach to prune unsatisfactory
design spaces (i.e., unsatisfactory assembled cases), and to
validate the rest of the assembled cases of a DRE system
from its requirements at system assembly time.

In addition to functional requirements, quality of service
(QoS) that pertains to the usage of resources is an impor-
tant requirement of DRE systems.QoS parametersare used
to evaluate the degree of performance of QoS using util-
ity functions, which is the mathematical formulas that show
the utility of QoS. For example, timeliness is a quantifiable
QoS parameter that estimates whether the deadline is met by
the addition of the execution time of involved components.
Security, however, is a non-quantifiable QoS parameter
that evaluates the level of security of a DRE system being
achieved with a user-defined function. This paper presents
a two-level assurance technique, called“QoS-UniFrame,”
for QoS of DRE systems assembled from components. This
technique, based on artificial intelligence and statistics, re-
duces the design space and validates QoS requirements at
system assembly time. Consequently, we believe that dis-
carding infeasible and less probable cases at system assem-
bly time will require less runtime validation. In addition
to assurance and validation, QoS-UniFrame concentrates
on observing and adapting non-orthogonal QoS parameters
(e.g., CPU usage and throughput) seldom addressed by re-
searchers. QoS-UniFrame also exploits AspectJ [8] to pro-
mote reusability and modularity by separating the source
code to analyze constraints from that to construct design
spaces. The modification of the constraint analysis code is
convenient and isolated from the rest of the source code.



This paper is organized as follows: in the next section,
background and related work are addressed; section 3 in-
troduces the framework and techniques of QoS-UniFrame;
section 4 provides a case study; finally, we conclude and
point out the future work of the paper in section 5.

2. Background and Related Work

2.1 Background of QoS-UniFrame

The implementation of QoS-UniFrame is based on two
techniques described in the following subsections.

2.1.1 Petri Nets
System engineers need to make various decisions while
constructing a DRE system. Different decisions may re-
quire cooperation with different components. For one deci-
sion, there may be diverse execution orders, execution time,
and events to trigger execution among the chosen compo-
nents. Therefore, there are a huge number of possible as-
sembled cases generated based on different decisions and
components with the consideration of various orders, time,
and events. QoS-UniFrame reduces the complexity of ex-
ploring all possible assembled cases for building a DRE sys-
tem by evaluating their QoS requirements. The evaluation
of QoS of a specific assembled case depends onwhen, what,
andhow the components request QoS requirements.When
expresses the specific time or before/after a specific event
a component has effect on a QoS parameter;what speci-
fies which QoS parameter is inspected;how represents the
relationship of data access among the components.

In most QoS research (e.g., [13]), dataflow analysis is
applied to explore possible solutions for assurance of QoS
requirements.A segment of a dataflowis a directed arrow
between two (sets of) components generated by a single de-
cision. The directed arrow means that two (sets of) compo-
nents have requests to access a QoS parameter from one to
another, or have effect on a QoS parameter by cooperation
between each other. For multiple decisions after a specific
segment of a dataflow, multiple segments will be generated
and flow to corresponding (sets of) components. Finally,
variousdataflows(also calledQoS systemic paths), and the
sequences of the segments of dataflows, will be generated
as a tree structure by different decisions. Namely, the leaves
of the tree are all possible assembled cases created based on
different decisions. However, the dataflow analysis is not
sufficient for analyzing DRE systems, because some QoS
analyses require additional information. For example, in
some DRE systems, the performance of the systems relies
on the levels of QoS to be achieved. Different levels of
QoS will trigger corresponding events, and vice versa. Fur-
thermore, time and priority constraints also influence QoS.
All of these characteristics show the difficulty for dataflow
analysis to assure QoS requirements of DRE systems.

A Petri Net is a formalism similar to dataflow analysis,
but has additional abstractions beneficial in modeling con-
current and asynchronous systems [14]. It is expressed by
a Petri Net graph, which is a visual representation that can
model a DRE system. A Petri Net graph consists of abstrac-
tions adequate to analyze QoS requirements of possible as-
sembled cases of a DRE system.Tokensrepresent QoS pa-
rameters with the identifiers, and the types and ranges of the
parameters.Places, (sets of) components in a DRE system,
are the same as the starting and end points of a segment of a
dataflow in the dataflow analysis.Flows, same as dataflows,
control the flowing direction of the QoS parameters.Transi-
tionsembody associated predicates and functions for time,
priorities and event triggers to determinewhat, whenand
how QoS parameters are to be processed [14]: only when
specific conditions are satisfied can the QoS parameter be
processed by descendent components.
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Figure 1. The Petri Net graph and its reacha-
bility tree example.

To explore various possible assembled cases, thereacha-
bility tree is exploited to diagnose a Petri Net graph. Figure
1 (a) is a simple Petri Net that shows the formalism to model
a DRE system with various design decisions and time and
event concerns described below. Assume that eight com-
ponents (C0 to C7) constitute a simple DRE system. Both
C1 and C2 have two decisions such that C1 can either work
with C0 or C2, and C2 can cooperate with C1 or C3. A
QoS parameter (black token) that processes C1 and C2 will
be accessed by both C5 and C6. C4, C5 and C6, and C7
can deal with the QoS parameter at timet1, t2 and t3, re-
spectively. C1 and C2 with two flows means the token will
stream to one of two transitions without preference (i.e., al-
ternative decisions). Finally, transition B and C verify if
C2 has an event (gray token) execution that triggers C5 and
C6 to access the QoS parameter. For B, three conditions
cause the black token stream to C5 and C6: the black to-
kens in C1 and C2 are both flowing in; the gray token in
C2 is flowing in, and is verified by B; and timer is at time
t2. Consequently, one assembled case is made, and branch
1 of Figure 1 (b) is constructed correspondingly. Figure 1
(b) is the reachability tree of Figure 1 (a) generated by the
construction principles stated above. The purpose of a Petri
Net is to explore and generate possible assembled cases by
its reachability tree based on the design decisions, selected



components considering priorities, events, and time.
There are several advantages to modeling DRE systems

using Petri Nets. First, as stated before, Petri Nets’ abstrac-
tions and characteristics are appropriate to simulate DRE
systems, either for functional or nonfunctional require-
ments. They overcome the insufficiency of the dataflow
analysis. In addition, the transitions regarding priority, time,
and events infer the concept of dynamic decision making
such that only when a specific transition is persuaded can
an assembled case by the decision be generated.

2.1.2 AspectJ
AspectJ[8] is an aspect-oriented programming (AOP) lan-
guage [9] for Java. It provides a modular mechanism to
avoid the error-prone, fragile and tedious modification work
for constraint analysis. Anaspectrecognizes the points of
the method crosscutting Java’s classes usingpointcuts, and
then defines how the modification should be made usingad-
vice. The aspect code isweavedinto the Java base code
with good modularity such that any change of the modifi-
cation is isolated in the aspect. Hence, AspectJ promotes
a better means to modularize and reuse the source code.
QoS-UniFrame exploits AspectJ to recognize the methods
of the reachability tree construction, and insert the con-
straint analysis method code.

2.2 Related Work

An Ordered Binary Decision Diagram (OBDD)[2] ap-
plies symbolic representations (i.e., binary encodings) to
prune off the unsatisfactory design spaces [13]. It encodes
mode space (i.e., functional behaviors that QoS-UniFrame
does not cover), configuration space (i.e., dataflow), and
constraints into binary representations. Binary operations
are used to compute the fulfillment of constraints. How-
ever, the OBDD method suffers from the following disad-
vantages. First, binary operations for addition and multi-
plication are rigid and not user-friendly. It is not easy for
system analysts to adjust the evaluation of pruning design
spaces adaptively. In addition, this binary method requires
sufficient temporary variables for computation. Second,
many of the QoS parameters are non-orthogonal such that
adjustment of one QoS parameter may substantially affect
other QoS parameters. It is hard to specify a composite non-
orthogonal constraint by means of conjunction and disjunc-
tion. A quantitative expression (e.g., a linear or nonlinear
function) would be a better alternative. Third, the OBDD
representation is not mature enough to solve system-level
constraint problems and“the scalability of the method be-
comes susceptible and results in an exponential blow-up in
OBDD representation” [13]. Most importantly, OBDD is a
static design space pruning approach such that the computa-
tion can be processed when a dataflow with corresponding
constraints is entirely constructed. All of these disadvan-
tages motivate the development of QoS-UniFrame.

There has been considerable research to validate
scheduling requirements of DRE systems. In [3], the timing
constraint is validated by a symbolic model checking ap-
proach. Symbolic model checking is an extension of model
checking such that analysis is based on symbolic transition
representation and propositional logic with the extension of
time operators. In [4] and [6], specialized Petri Nets were
applied to verify time behaviors of DRE systems. All assur-
ance by either model checking or Petri Nets has an inherent
problem that validation does not always guarantee that the
actual synthesized DRE systems are perfectly satisfactory:
unpredictable behaviors that sometimes occur in DRE sys-
tems degrade the confidence of validation. Therefore, sup-
portive statistical references utilized by QoS-UniFrame will
be valuable as unpredictable behaviors occur.

3 QoS-UniFrame

Before the details of QoS-UniFrame are addressed, a
brief example is given to illustratewhy and how QoS-
UniFrame solves the design space exploration problem with
the constraint satisfaction:

A water treatment plant requires deploying new treat-
ment units (TUs) to two new water treatment pools. Under
the limit of the budget, the system and deployment engineers
would like to ascertain the best performance of collective
TUs from the blueprint. During the system design stage,
different design and deployment decisions are made such as
the order and the priority of the TUs, and the locations of
the specialized TUs. In addition, the deployment of the TUs
has various restrictions such as the bandwidth and the sig-
nal strength of the wireless network, the life of a battery in
each TU, and the processing speed of the CPU in each TU.

Numerous decisions and constraints require concentra-
tions in this project, and many of them have mutual effects.
Hence, a manual procedure to construct and manage this
project is error-prone and tedious. QoS-UniFrame answers
these requests to ease the workload of the design decisions
with constraints of the project. Starting from functional and
nonfunctional requirements, a use case scenario is analyzed
to determine the static and dynamic QoS requirements. Sys-
tem engineers construct a visual Petri Net model according
to their design and deployment decisions. The system engi-
neers depict the mutual behaviors of each component based
on their QoS parameters in the Petri Net model. System an-
alysts write the AspectJ codes with respect to the evaluation
of strict or orthogonal static constraints (defined later), such
as the total capacity of the batteries of TUs. These aspects
are weaved into a dynamic and parallel approach to gen-
erate a tree abstraction including all feasible cases. Back-
tracking and branch-and-bound algorithms are employed to
prune off infeasible assembled cases based on strict or or-
thogonal static QoS requirements at the first level. System



analysts then write a domain-specific scripting code of evo-
lutionary algorithms. The source code takes non-orthogonal
or non-strict static, and dynamic QoS (defined later) into ac-
count with specific mathematical functions. The evolution-
ary algorithms will generate statistical results automatically.
The less probable cases will be eliminated according to the
discarding policies written in the domain-specific scripting
code. The survival cases will be stored back to the knowl-
edge base with their statistical information. Figure 2 shows
the framework of QoS-UniFrame.
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Figure 2. The framework of QoS-UniFrame.

3.1 Classification of QoS Parameters

QoS-UniFrame currently concentrates on those QoS re-
quirements that can be quantified. Namely, non-quantifiable
QoS requirements (e.g., security and reliability) are out of
our scope. QoS-UniFrame further classifies quantifiable
QoS requirements into static and dynamic.Static QoSis
design-related, anddynamic QoSis substantially influenced
by the deployment environment. Many of the static QoS re-
quirements can be evaluated at component assembly time,
yet dynamic QoS requirements need either simulators or
virtual machines to monitor, predict, and adapt the QoS con-
cerns. However, several dynamic QoS requirements can be
assessed by referring to a component’s previous state and
observations, as stored in a knowledge base at assembly
time. Static and dynamic QoS parameters may be further
subclassified into strict and non-strict, and orthogonal and
non-orthogonal QoS.Strict QoSrequirements (e.g., hard
deadlines) force DRE systems to meet the requirements.
Otherwise, the system will be incorrect because it cannot
meet its QoS.Non-strictQoS requirements (e.g., soft dead-

lines) allow margins of error when meeting QoS require-
ments. The performance of the system will be degraded ac-
cording to the magnitude that non-strict QoS requirements
are not assured.Orthogonal QoSimplies that its adaptation
will not influence other QoS, yetnon-orthogonal QoSsub-
stantially affects other QoS directly or indirectly. According
to the hierarchy of classification, QoS-UniFrame separates
static and dynamic QoS into a two-level assurance process.

3.2 Petri Net-based QoS Modeling

In order to explore design spaces efficiently and assure
QoS requirements manageably, a formal approach to model
and analyze the components of a DRE system with respect
to its QoS is necessary: a Petri Net-based QoS modeling
language has been created in the Generic Modeling Envi-
ronment (GME) [10].

 public aspect Analysis { 
 pointcut Monitor(QosPar par) :  
         call( public void *.createNode(..)) && args(par); 
 after(QosPar par1) : Monitor(par1)   
 {   double temp=0; 
     if (par1.getName().equals("MPC"))    { 
            //MPC stands for "Maximum Flow Processi ng Capacity"  
   temp=par1.getValue(); 
       //evaluate MPC’s QoS requirement  } 
 } 
 after(QosPar par2) : Monitor(par2)   
 {   double temp=0; 
     if (par2.getName().equals("BL"))     { 
           //BL stands for "Battery Life" 
  temp=par1.getValue(); 
  //evaluate BL’s QoS requirement    }                          
 } 
}  

Figure 3. Constraint analysis method code for
QoS parameters written in AspectJ.

As stated before, a Petri Net can explore and produce de-
sign spaces using the reachability tree. QoS-UniFrame eval-
uates strict or orthogonal static QoS requirements as a child
node of a reachability tree is generated, and remove infeasi-
ble child nodes. Thus, strict or orthogonal static constraint
analysis methods crosscut the source code of the child node
construction of the reachability tree. The source code that
analyzes constraints is written in AspectJ [8] as shown in
Figure 3, and is weaved into the source code of the child
node construction. In Figure 3,pointcut“Monitor” recog-
nizes the method that generates a child node of the reach-
ability tree. The firstafter advice statement evaluates the
maximum flow processing capacity (MPC). It shows that
after the“createNode” method is called, the QoS parameter
is accessed, and then is evaluated by bounding and criterion
functions (defined later). The secondafteradvice statement
evaluates the battery life (BL) using different bounding and
criterion functions after the“createNode” method is called.

Implementing Petri Nets with GME and AspectJ con-
tributes several merits. Because GME is a metaconfigurable
modeling tool that permits customization [10], Petri Net
models (i.e., simulation of DRE systems) can extend new



features easily. Clear and appropriate syntactical and se-
mantic design constraints supported in GME moderate the
possibility of the errors occuring at the design phase. The
visual modeling environment of GME also provides a user
friendly and easily manageable environment for system en-
gineers. In addition, separation of concerns of construction
of QoS systemic paths and constraint analysis methods pro-
motes reusability and modularity of source code. Various
orthogonal QoS parameters can be evaluated concurrently
by writing different advice in the analysis aspect (Figure 3).
In this context, concurrency means that all of the constraint
analysis codes are embedded in a child node construction
method; namely, all advice crosscuts the same pointcut.
Thus, it is necessary to define the advice precedence (i.e.,
weaving order of the advice) to avoid conflicts.

3.3 Backtracking and Branch-and-bound

In order to decrease the design spaces dynamically, the
reachability tree construction code and its analysis aspect
(Figure 3) are embedded into backtracking or branch-and-
bound (B/B) algorithms [7]. The B/B algorithm that QoS-
UniFrame exploits is the first level assurance to evaluate sta-
tic QoS parameters that are strict and orthogonal, as in [13].
Thebacktracking algorithmemploys a depth-first search on
the reachability tree structure with bounding and criterion
functions. Bounding functions are the constraints of strict
and orthogonal static QoS requirements, and criterion func-
tions (i.e., QoS utility functions) are used to determine the
optimal solutions of a QoS systemic path, either maximal or
minimal. The backtracking algorithm constructs the reach-
ability tree from the root by depth-first search. It evaluates
the bounding and criterion functions at every intermediate
node. If the criterion applied to certain nodes does not meet
the bounding function, the backtracking algorithm will stop
generating all descendant nodes. Alternatively, thebranch-
and-bound algorithmoperates with the reachability tree us-
ing various search algorithms.LC-search[7] is an improved
search algorithm with a ranking function QoS-UniFrame
chooses to implement. Similarly, the branch-and-bound al-
gorithm traces from the root of a reachability tree. The rank-
ing function determines the next node (i.e., live node) to
be evaluated. LC-search intelligently ranks the live nodes
to avoid the fixed order searches. Bounding and criterion
functions in the backtracking algorithm play the same roles
to stop constructing unsatisfactory child nodes. Therefore,
the B/B algorithmdynamicallyeliminates the unsatisfactory
design spaces based on strict and orthogonal static QoS re-
quirements. Unlike most pruning design space approaches,
such as [13], that evaluate one design space at a time, the
B/B algorithm introduces a“parallel pruning concept” that
cuts infeasible descendant leaves concurrently; namely, all
the child nodes of an unsatisfactory intermediate node are
discarded at the same time, which means infeasible design

spaces are eliminated simultaneously.

3.4 Evolutionary Algorithms

In the DRE domain, it is tedious and time-consuming
to validate one QoS requirement at a time. The B/B al-
gorithm processes various strict and orthogonal static QoS
parameters simultaneously writing different advice in an as-
pect. For non-strict or non-orthogonal static QoS require-
ments, and dynamic QoS requirements, QoS-UniFrame uti-
lizes evolutionary algorithms (EAs) [12] as the second level
assurance. AnEA is a search and optimization technique
based on the principles of natural selection and survival of
the fittest [12]. The decision of the fittest (i.e., maximum,
minimum or average) comes from the results of linear or
nonlinear fitness functions in EAs. The fitness functions
solve the tedious and time-consuming problem of non-strict
static QoS, and the side effect problem of non-orthogonal
(static and dynamic) QoS by combining all of the associated
QoS requirements into a mathematical formula. Because
dynamic QoS requirements need to comply with the deploy-
ment environment, QoS-UniFrame processes static and dy-
namic QoS requirements in separate steps. QoS-UniFrame
has developed a domain-specific scripting language, called
PPCEA [11], to make EAs expeditious and adaptable. PPCEA

and AspectJ express the assurance of QoS requirements by
means of linear or nonlinear functions. These representa-
tions make the assurance process easier to scale than the
OBDD approach at system assembly time.

3.4.1 Static QoS Requirements
The B/B algorithm is, in fact, able to evaluate non-
strict/non-orthogonal static QoS requirements by AspectJ.
However, the unique purpose of the B/B algorithm is to re-
move infeasible design spaces with the dynamic and paral-
lel concept. Hence, we postpone computing non-strict/non-
orthogonal static QoS until the second level assurance. An
EA evaluates the best results of non-strict/non-orthogonal
static QoS parameters by a user-defined fitness function.
For example, a DRE system constructed by a set of PDAs
that meets battery maximum capacity may estimate the op-
timal solution of the lifetime, the disposal fee, and the pur-
chase cost of the batteries by a fitness function. Therefore,
a user-defined fitness function can satisfy this demand.

3.4.2 Dynamic QoS Requirements
Evaluating dynamic QoS requires the cooperation of the de-
ployment environment. However, the statistical results of
dynamic QoS by EAs at component assembly time may
serve as excellent estimates and as substitutions as unpre-
dictable behaviors occur later at runtime. EA solves the
best, worst, and average fitness values and their standard
deviations of a user-defined fitness function. Dynamic QoS
requirement validation, such as deadlines for real-time sys-
tems, uses the previous state information of a component in



the knowledge base to obtain the statistical results. Some
assembled cases of these statistical results can be the refer-
ences of runtime validation evaluation, and others may be
eliminated by discarding policies invented based on PPCEA.

User-defined discarding policies determine how and which
assembled cases are rejected. More details will be explained
in the next subsection.

3.4.3 PPCEA

To obtain the statistical outputs from EAs efficiently and to
discard less probable assembled cases flexibly, a domain-
specific scripting language, Programmable Parameter Con-
trol for Evolutionary Algorithms (PPCEA ) [11], has been
developed. PPCEA keeps the evolution process simple and
raises the control parameter settings up to a high abstrac-
tion level in a programming fashion. In PPCEA, a configu-
ration mechanism is provided to embed the parameters of
EAs (e.g., crossover, mutation and discard rate, and popu-
lation size) and its fitness function into the computation of
EAs. The modification of these parameters is by a program-
ming fashion, i.e., assignment statement. This mechanism
provides the flexibility for users to find the optimal solution
by different kinds of parameter settings [11].

     fi; genetic 
   Discard := 1.1;  //discard rate by parameter tuning 
   while (t <= 10) do    
     init;          //initialize population 
     call_EA;//evaluate fitness value for a population 
     Temp := Temp + Worst;//Temp is temporary variable 
     t := t + 1           
   end;    
   Temp := Temp / t; 
   if (Temp > QoS*Discard) 
     //Avg of Worst value far from requirement 
     delete_gene //delete test cases not satisfied 
   fi; 
end genetic 

Figure 4. Parameter tuning discarding policy
written in PPC EA.

After defining the fitness function and parameters,
PPCEA decides which genotypes (i.e., assembled cases)
should be deleted from the population by the discarding
policies with their discard rates. Users can apply parameter
tuning, deterministic, or adaptive [5] discarding policies to
the discard rate. Parameter tuning determines the value of
the discard rate by assigning a constant value before each
EA run. The deterministic method assigns the discard rate
before the evaluation by a deterministic rule based on linear
algebra [11]. Finally, the adaptive method adjusts the dis-
card rate during the run of evaluation [11]. Figure 4 shows
the example of parameter tuning discarding policy that op-
erates with the discard rate.“t” is the counter for the while
loop; “Discard” is the discard rate for discarding policy;
“QoS” is a dynamic QoS requirement;“Worst” is the worst
fitness value;“Temp” is the temporary variable for the con-
venience of computation;“call EA” evaluates the values of
fitness function of each genotype; and“deletegene” dis-
cards those genotypes that do not meet the requirements. In

Figure 4, if the average of ten worst cases is greater than
1.1 (i.e., user-defined discard rate) times the strict dynamic
QoS requirement, the test case can be rejected.

4 A DRE System Case Study

This section presents a Petri Net-based QoS model of an
example DRE system representing the water treatment plant
described in section 3. The system engineers would like to
examine the best performance of the water treatment ability
under certain constraints:
(a) Due to the budget constraint, only three and two treat-

ment units can be chosen for pools one and two for the
water treatment process, respectively.

(b) the total maximum flow processing capacity is at least
50 million gallons per day.

(c) the battery life of each TU has at least 15 hours left.
(d) total CPU usage is at most 70 percent.
(e) total water treatment volume of selected TUs is at least

35 million gallons per day.
(f) Pipeline A must pump water into Pool Two at timet1;

Pipeline B and C must pump water into Tower X and Y
at timet2, respectively.

Table 1. The values of QoS parameters of the
water treatment plant example

TU MPC BL CPU usage WTV
C11 10 20 (20,23) (5,8)
C12 15 14 (10,12) (10,12)
C13 13 17 (15,18) (10,12)
C14 15 22 (5,7) (8,10)
C21 16 28 (10,15) (5,9)
C22 18 33 (15,18) (4,7)
C23 20 20 (20,22) (7,10)

Constraint (a) is a restriction of the design decision. Con-
straints (b) and (c) are the strict and orthogonal static QoS
parameters. Constraints (d) and (e) are the dynamic QoS
parameters. Constraint (f) is the time constraint. Table 1
includes all of the values of the QoS parameters requested
from the knowledge base. Column 1 shows the identity of
each treatment unit (TU), column 2 contains the maximum
flow processing capacity (MPC) of each TU (million gal-
lons/day), column 3 shows the current battery life (BL) of
each unit (voltage), column 4 is the CPU usage of each TU
(%), and the last column contains the water treatment vol-
ume (WTV) of each TU (million gallons/day). Figure 5
shows the Petri Net model of the project under constraints
(a) and (f). The bars (i.e., transitions) at the same level of
t0, t1andt2 horizontally have the mechanism of the timing
control.

QoS-UniFrame generates a reachability tree of the
project based on strict and orthogonal static QoS. During
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Figure 5. The example of the Petri Net model
representing the water treatment plant.

Table 2. The experimental results of the water
treatment plant project

Case 1 Case 2 Case 3
CPU Average 69.8223 73.9332 77.4793
CPU Worst 64.1087 75.0327 78.4904

WTV Average 40.7911 43.25 42.107
WTV Worst 36.2826 39.4127 37.1191

NO Best 11.8349 10.4933 11.215
NO Average 11.3491 10.1158 10.6731
NO Worst 9.483 8.4471 8.9652

the first level assurance, twoafter advice statements from
Figure 3 are written and weaved into the source code of
the tree construction. The first advice examines the sat-
isfaction of the constraint (b), and the second advice as-
sures the constraint (c). From the experimental result, QoS-
UniFrame shows that C12 does not meet the constraint (c).
Thus, only C11, C13, C14, C21, C22 and C23 will be
chosen for pool one and pool two. At this stage, three
assembled cases have survived:{C11,C13,C14,C21,C22},
{C11,C13,C14,C21,C23}, and {C11,C13,C14,C22,C23}.
Subsequently, the CPU usage and water treatment volume
(WTV) require the previous states and observations stored
in the knowledge base. Table 1 contains the boundaries
of the dynamic QoS requirements. At the second level,
the parameter tuning approach written in PPCEA code is
involved (Figure 4). First, two dynamic QoS constraints
are examined independently by using addition. The prede-
fined discard rate is 1.1, which means if the worst case is
greater than 1.1 times this strict dynamic QoS requirement,
the evaluated case is deleted. All of the predefined values
of parameters needed for EAs are in Table 2.“Discard”

is defined in section 3.4.3.“Maxgen” is the maximum
number of generations (100) an EA can run.“Popsize”
is the size of a population (value 100),“Pxover” is the
crossover rate (0.5), and“Pmutation” is the mutation rate
(0.7) [12]. Please note that, for brevity, only one parame-
ter setting is represented in the paper. To obtain the best
statistical results, a fitness function can be evaluated with
various parameter settings in a programmable fashion dur-
ing the execution of PPCEA code [11]. Table 2 contains
the average results of each case after ten iterations at the
second level. Case 1 represents{C11,C13,C14,C21,C22},
case 2 expresses{C11,C13,C14,C21,C23}, and case 3
is {C11,C13,C14,C22,C23}. “NO” stands for the non-
orthogonal fitness function described below. Table 2 shows
that{C11,C13,C14,C22,C23}’s average of ten worst cases
is bigger than 1.1 times the constraint (d). Therefore, QoS-
UniFrame tends to discard this design space. Case 3 does
not meet the discarding policy, so QoS-UniFrame keeps its
information for future use. Because CPU usage and water
treatment volume are non-orthogonal dynamic QoS para-
meters, we defined a fitness function to address the mutual
effect of CPU usage and water treatment volume. The fit-
ness function is defined as below:

f(x) = (CPU Usage)/(Water Treatment V olume)

This function is treated as the statistical references for
future investigation instead of a constraint. Finally,
{C11,C13,C14,C21,C23} and {C11,C13,C14,C21,C22}
are two survival cases statistically based on Figure 4.

The
assembled
case that
violates

constraint
(c)

Case 1 Case 2
Case 3 eliminated by

PPCEA  based on
Statistics

Figure 6. The Petri Net reachability tree of the
water treatment plant example.

These experimental results show that QoS-UniFrame
outperforms the OBDD approach [13] in the example of
the water treatment plant project. At the first level, QoS-
UniFrame cuts off 3 intermediate nodes, as shown in Figure
6. Each of these intermediate nodes have three more child
nodes. Therefore, 9 more design spaces are eliminated be-
fore the end of reachability tree construction. The OBDD
method, however, requires generating all 12 cases which
is less efficient than QoS-UniFrame. In addition, by using
the discarding policy at the second level, PPCEA statistically
discards one more case. Therefore, QoS-UniFrame has bet-
ter performance than the OBDD approach for this specific
example.



5 Conclusion and the Future Work
The earlier that an error is detected in the software life-

cycle, the less costly it is to fix [1]. QoS-UniFrame obeys
this golden rule to reduce the design space at system assem-
bly time. At the first level, the dynamic and parallel pruning
approach is applied to expedite the pruning process. Only
the feasible QoS systemic paths are generated by back-
tracking or branch-and-bound algorithms. At the second
level, a fine-grained statistical approach is employed to fur-
ther eliminate less probable QoS systemic paths. PPCEA

also provides auxiliary statistical results as the reference
at runtime. In addition, constructing Petri Net-based QoS
modeling in the GME in collaboration with AspectJ facili-
tates customization, extensibility, flexibility, modularity and
reusability. In conclusion, QoS-UniFrame provides a for-
mal, manageable, scalable and semi-automatic approach to
prune off unsatisfactory design spaces, and to validate a
DRE system from its requirements at system assembly time.
The design complexity of building DRE systems complying
with numerous decisions, ordered components, events, and
time can be further reduced than the OBDD method. For
more details regarding QoS-UniFrame, please refer to [15].

QoS-UniFrame introduces a mathematical method (i.e.,
a fitness function) to solve the non-orthogonal QoS side
effect problem. However, this approach is still not com-
prehensive and further research is necessary. For exam-
ple, the priorities of the non-orthogonal QoS and the de-
gree of the affectations among these QoS must be defined.
Finally, QoS-UniFrame is a semi-automatic toolkit to ex-
plore, decrease and then assure the design spaces with con-
straints. System analysts would be required to have the ba-
sic knowledge of programming skills in AspectJ and PPCEA.

A comprehensive automatic toolkit of design space explo-
ration and assurance that eases system analysts and system
engineers’ workload is also the future direction of QoS-
UniFrame.
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